Interparticle collisions driven by ultrasound.

نویسندگان

  • S J Doktycz
  • K S Suslick
چکیده

Ultrasound has become an important synthetic tool in liquid-solid chemical reactions, but the origins of the observed enhancements remained unknown. The effects of high-intensity ultrasound on solid-liquid slurries were examined. Turbulent flow and shock waves produced by acoustic cavitation were found to drive metal particles together at sufficiently high velocities to induce melting upon collision. A series of transition-metal powders were used to probe the maximum temperatures and speeds reached during such interparticle collisions. Metal particles that were irradiated in hydrocarbon liquids with ultrasound underwent collisions at roughly half the speed of sound and generated localized effective temperatures between 2600 degrees C and 3400 degrees C at the point of impact for particles with an average diameter of approximately 10 microns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High velocity interparticle collisions driven by ultrasound.

Ultrasonic irradiation of slurries produces high velocity impacts between solid metal particles that are sufficient to cause interparticle melting. Sonication of 5 mum Zn powder as a slurry in alkanes, for example, produces dense agglomerates 50 mum in diameter consisting of approximately 1000 fused particles. Particle size was found to be the most influential parameter in inducing local meltin...

متن کامل

Particle in Cell-Monte Carlo Collisions of a Plasma Column Driven by Surface Wave Plasma Discharges

In this work, applicability of Particle in Cell-Monte Carlo Collisions (PIC-MCC) simulation method for better understanding of the plasma physical mechanisms and real important aspects of a plasma column driven by surface wave plasma discharges that is used in plasma antennas is examined. Via the implementation of geometry and physical parameters of the plasma column to an Object Oriented PIC-M...

متن کامل

Random organization in periodically driven systems

Understanding self-organization is one of the key tasks for controlling and manipulating the structure of materials at the microand nanoscale. In general, self-organization is driven by interparticle potentials and is opposed by the chaotic dynamics characteristic of many driven non-equilibrium systems. Here we introduce a new model that shows how the irreversible collisions that generally prod...

متن کامل

Angular Momentum Transport in Particle and Fluid Disks

We examine the angular momentum transport properties of disks composed of macroscopic particles whose velocity dispersions are externally enhanced (“stirred”). Our simple Boltzmann equation model serves as an analogy for unmagnetized fluid disks in which turbulence may be driven by thermal convection. We show that interparticle collisions in particle disks play the same role as fluctuating pres...

متن کامل

Momentum Transport in Particle and Fluid Disks

We examine the angular momentum transport properties of disks composed of macroscopic particles whose velocity dispersions are externally enhanced (“stirred”). Our simple Boltzmann equation model serves as an analogy for unmagnetized fluid disks in which turbulence may be driven by thermal convection. We show that interparticle collisions in particle disks play the same role as fluctuating pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 247 4946  شماره 

صفحات  -

تاریخ انتشار 1990